Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 393: 130105, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38008223

RESUMO

Hydrochars are promising adsorbents in pollutant removal for water treatment. Herein, hydrochloric acid (HCl) co-hydrothermally treated hydrochars were prepared from rice husk biomass at 180 °C via a one-step hydrothermal method. Adsorption behaviors of levofloxacin (LVX) on hydrochars were evaluated. The specific surface area and pore volume of the hydrochar synthesized in 5 mol/L HCl (5H-HC) were almost 17 and 8 times of untreated hydrochar, respectively. The 5H-HC sample exhibited the highest LVX adsorption capability at room temperature (107 mg/g). Thermodynamic experimental results revealed that adsorption was a spontaneous endothermic process. Yan model provided the best description of the breakthrough behavior of LVX in bioretention column, indicating that the adsorption on the samples involved several rate-limiting factors including diffusion and mass transfer. The results show that facile HCl co-hydrothermal carbonization of waste biomass can produce novel hydrochars with high LVX adsorption ability.


Assuntos
Oryza , Ácido Clorídrico , Levofloxacino , Termodinâmica , Adsorção , Carbono
2.
Chemosphere ; 349: 140932, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096991

RESUMO

In this paper, the two-dimensional (2D) layered CoAl LDH (CoAl) was coupled with Bi2MoO6 (BMO) nanoplate and used for tetracycline (TC) degradation. Based on the results of UV-visible diffuse reflectance spectrum (UV-vis DRS), Motty-Schottky curves, and in situ X-ray photoelectron spectroscopy (XPS), a novel 2D/2D Bi2MoO6/CoAl LDH S-scheme heterojunction photocatalyst was built. The photodegradation rate constant of TC by the optimized sample BMO/CoAl30 was 3.637 × 10-2 min-1, which was 1.26 times and 4.01 times higher than that of Bi2MoO6 and CoAl LDH, respectively. The favorable photocatalytic performance of the heterojunction was attributed to the increased interfacial contact area of the 2D/2D structure. Besides, the transfer of photogenerated electrons from Bi2MoO6 to CoAl LDH under the effect of the built-in electric field (BIEF) reduced the recombination of photogenerated carriers and further improved the photocatalytic performance. The reactive species of h+, ·O2-, and 1O2 exhibited critical roles to degrade TC molecules by reactive radicals capture experiments and electron spin resonance (ESR) tests. The intermediate products of TC degradation and toxicity of intermediates were analyzed by liquid chromatography-mass spectrometer (LC-MS) and Toxicity Estimation Software Tool (T.E.S.T). Additionally, the BMO/CoAl composite photocatalysts showed high stability and environmental tolerance during the testing of cycles and environmental impacts with various water sources, organic contaminants, initial pH, and inorganic ions. This work provides a new protocol for designing and constructing novel 2D/2D S-scheme heterojunction photocatalysts for wastewater treatment.


Assuntos
Compostos Heterocíclicos , Tetraciclina , Antibacterianos , Bismuto , Cromatografia Líquida , Carvão Mineral
3.
J Hazard Mater ; 443(Pt B): 130300, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36345061

RESUMO

Layered double hydroxide (LDH) materials were widely applied for adsorption and photodegradation of pollutants for wastewater treatment. New efficient LDH materials with adsorption and photodegradation abilities will be promising candidates for pollutants removal. Hence, a series of NiFe-LDH/biochar (NiFe/BC) were fabricated by the coprecipitation method for synergistic adsorption and photodegradation anionic dyes of reactive red 120 (RR120). The removal experiment showed that the addition of an appropriate amount of biochar into NiFe-LDH enhanced the adsorption capacity and its photocatalytic ability. The optimized NiFe/BC2 composite can remove 88.5 % of RR120 under visible light by adsorption and photocatalysis, which was much better than NiFe-LDH (63.3 %) and biochar (2.6 %). The photodegradation kinetic constant of the NiFe/BC2 composite was 3.1 and 104.8 times that of NiFe-LDH and BC. In addition, active species capture experiments and electron spin resonance (ESR) tests revealed the removal mechanisms of NiFe/BC composites for RR120 removal. This work affords a feasible strategy for preparing LDH-based photocatalyst with excellent adsorption and photocatalytic performance for wastewater treatment.


Assuntos
Poluentes Ambientais , Níquel , Adsorção , Ferro , Fotólise , Hidróxidos
4.
Chemosphere ; 309(Pt 2): 136802, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36220437

RESUMO

Improving the adsorption ability of layered double hydroxide (LDH) has been considered as a promising strategy to promote its photodegradation of aqueous pollutants. In this work, nickel-aluminium layered double hydroxides (NiAl-LDH)/biochar nanocomposites were prepared using a simple coprecipitation method, and then applied in synergistic adsorption-photodegradation of tetracycline (TC) in aqueous solutions. In addition, the governing TC removal mechanisms by the nanocomposites were revealed. All NiAl-LDH/BC samples showed strong adsorption and photodegradation of TC. The Langmuir maximum TC adsorption capacity of optimized NiAl-LDH/BC-0.5 reached 124.2 mg/g, which was much better than that of NiAl-LDH (56.1 mg/g) and biochar (11.1 mg/g). Besides, TC photodegradation rate constant of NiAl/BC-0.5 was 3.6 and 4.4 times of that of NiAl-LDH and BC, respectively. The NiAl/BC-0.5 exhibited the maximum TC adsorption-photodegradation efficiency 94.4% in 90 min compared to NiAl-LDH (73.7%) and BC (48.2%). The rate constant of modified Elovich kinetic model for synergistic adsorption and photodegradation on NiAl/BC-0.5 (9.477 min-1) was the highest among the composites. The NiAl-LDH/BC had significantly larger BET surface areas than NiAl-LDH and BC. The step scheme (S-scheme) heterostructures were constructed on the interface of BC and NiAl-LDH in nanocomposites, which facilitated the transfer of photo-induced charges. This work demonstrates that combination of NiAl-LDH and biochar can create synergy for TC adsorption-photodegradation, which is a promising and green strategy.


Assuntos
Alumínio , Poluentes Químicos da Água , Adsorção , Alumínio/química , Níquel/química , Poluentes Químicos da Água/química , Fotólise , Hidróxidos/química , Tetraciclina , Hidróxido de Alumínio/química , Antibacterianos
5.
Environ Sci Technol ; 55(18): 12607-12618, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34495644

RESUMO

Engineering surface defects on metal oxide supports could help promote the dispersion of active sites and catalytic performance of supported catalysts. Herein, a strategy of ZrO2 doping was proposed to create rich surface defects on CeO2 (CZO) and, with these defects, to improve Pt dispersion and enhance its affinity as single sites to the CZO support (Pt/CZO). The strongly anchored Pt single sites on CZO support were initially not efficient for catalytic oxidation of CO/C3H6. However, after a simple activation by H2 reduction, the catalytic oxidation performance over Pt/CZO catalyst was significantly boosted and better than Pt/CeO2. Pt/CZO catalyst also exhibited much higher thermal stability. The structural evolution of Pt active sites by H2 treatment was systematically investigated on aged Pt/CZO and Pt/CeO2 catalysts. With H2 reduction, ionic Pt single sites were transformed into active Pt clusters. Much smaller Pt clusters were created on CZO (ca. 1.2 nm) than on CeO2 (ca. 1.8 nm) due to stronger Pt-CeO2 interaction on aged Pt/CZO. Consequently, more exposed active Pt sites were obtained on the smaller clusters surrounded by more oxygen defects and Ce3+ species, which directly translated to the higher catalytic oxidation performance of activated Pt/CZO catalyst in vehicle emission control applications.


Assuntos
Óxidos , Emissões de Veículos , Catálise , Oxirredução , Oxigênio
6.
J Hazard Mater ; 416: 125826, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492788

RESUMO

Understanding the nature of active sites on metal oxide catalysts in the selective catalytic reduction (SCR) of NO by NH3 (NH3-SCR) is a crucial prerequisite for the development of novel efficient NH3-SCR catalysts. In this work, two CeO2-based SCR catalyst systems with diverse acidic metal oxides-CeO2 interfaces, i.e., Nb2O5-CeO2 (Nb2O5/CeO2 and CeO2/Nb2O5) and WO3-CeO2 (WO3/CeO2 and CeO2/WO3), were prepared and used to reveal the relationship between NH3-SCR activity and surface acidity/redox properties. In combination with the results of the NH3-SCR activity test and various characterizations, it was found that the NH3-SCR performance of Nb2O5-CeO2 and WO3-CeO2 catalysts was highly dependent on the strong interactions between the redox component (CeO2) and acidic component (Nb2O5 or WO3), as well as the amount of paired redox-acid sites. From a quantitative perspective, an activity-surface acidity/redox property relationship was proposed. For both Nb2O5-CeO2 and WO3-CeO2 catalysts systems operated at the more concerned low-temperature range (200 °C), the NH3-SCR activity in low NOx conversion region (< 40%) was mainly dominated by the surface acidity of catalysts, while the NH3-SCR activity in high NOx conversion region (> 40%) was more determined by redox properties.

7.
Environ Sci Technol ; 55(6): 4017-4026, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33656869

RESUMO

Investigating catalytic reaction mechanisms could help guide the design of catalysts. Here, aimed at improving both the catalytic performance and SO2 resistance ability of catalysts in the selective reduction of NO by NH3 (NH3-SCR), an innovative CeO2-SiO2 mixed oxide catalyst (CeSi2) was developed based on our understanding of both the sulfur poisoning and reaction mechanisms, which exhibited excellent SO2/H2O resistance ability even in the harsh working conditions (containing 500 ppm of SO2 and 5% H2O). The strong interaction between Ce and Si (Ce-O-Si) and the abundant surface hydroxyl groups on CeSi2 not only provided fruitful surface acid sites but also significantly inhibited SO2 adsorption. The NH3-SCR performance of CeSi2 was promoted by an enhanced Eley-Rideal (E-R) mechanism in which more active acid sites were preserved under the reaction conditions and gaseous NO could directly react with adsorbed NH3. This mechanism-enhanced process was even further promoted on sulfated CeSi2. This work provides a reaction mechanism-enhanced strategy to develop an environmentally friendly NH3-SCR catalyst with superior SO2 resistance.


Assuntos
Amônia , Óxidos , Catálise , Oxirredução , Dióxido de Silício , Enxofre
8.
ACS Appl Mater Interfaces ; 11(5): 4900-4907, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30650968

RESUMO

Sulfur poisoning has long been recognized as a bottleneck for the development of long-lived NH3-selective catalytic reduction (SCR) catalysts. Ammonium bisulfate (ABS) deposition on active sites is the major cause of sulfur poisoning at low temperatures, and activating ABS decomposition is regarded as the ultimate way to alleviate sulfur poisoning. In the present study, we reported an interesting finding that ABS decomposition can be simply tailored via adjusting the pore size of the material it deposited. We initiated this study from the preparation of mesoporous silica SBA-15 with uniform one-dimensional pore structure but different pore sizes, followed by ABS loading to investigate the effect. The results showed that ABS decomposition proceeded more easily on SBA-15 with larger pores, and the decomposition temperature declined as large as 40 °C with increasing pore size of SBA-15 from 4.8 to 11.8 nm. To further ascertain the real effect in NH3-SCR reaction, the Fe2O3/SBA-15 probe catalyst was prepared. It was found that the catalyst with larger mesopores exhibited much improved sulfur resistance, and quantitative analysis results obtained from Fourier transform infrared and ion chromatograph further proved that the deposited sulfates were greatly alleviated. The result of the present study demonstrates for the first time the vital role of pore size engineering in ABS decomposition and may open up new opportunities for designing NH3-SCR catalysts with excellent sulfur resistance.

9.
RSC Adv ; 8(7): 3858-3868, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35542909

RESUMO

Chromium oxide nano-particles with an average diameter of 3 nm covered by amorphous carbon (CrO x /C) were successfully synthesized. The synthesized CrO x /C materials were used for the selective catalytic reduction of NO x by NH3 (NH3-SCR), which shows superb NH3-SCR activity and in particular, satisfactory regeneration ability in the presence of SO2 compared with Mn-based catalysts. The as-prepared catalysts were characterized by XRD, HRTEM, Raman, FTIR, BET, TPD, TPR, XPS and in situ FTIR techniques. The results indicated presence of certain amounts of unstable lattice oxygen exposed on the surface of CrO x nano-particles with an average size of 3 nm in the CrO x /C samples, which led to NO being conveniently oxidized to NO2. The formed NO2 participated in NH3-SCR activity, reacting with catalysts via a "fast NH3-SCR" pathway, which enhanced th NH3-SCR performance of the CrO x /C catalysts. Furthermore, the stable lattice of the CrO x species made the catalyst immune to the sulfation process, which was inferred to be the cause of its superior regeneration ability in the presence of SO2. This study provides a simple way to synthesize stable CrO x nano-particles with active oxygen, and sheds light on designing NH3-SCR catalysts with highly efficient low temperature activity, SO2 tolerance, and regeneration ability.

10.
Phys Chem Chem Phys ; 19(32): 21840-21847, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28783181

RESUMO

A Cu-doped CeO2 solid solution was constructed by co-precipitation and additional acid treatment to investigate the behavior of doped copper under thermal treatment. Acid treatment was used to intentionally remove the surface Cu species. Surface properties and fundamental characteristics of the catalysts were characterized by several techniques, as well as the CO oxidation performance. The results reveal that doped Cu ions could gradually migrate from the matrix to the catalyst surface during calcination. The degree of migration was mostly dependent on the calcination temperature, and also the concentration gradient of Cu between the surface and matrix. Catalytic testing in CO oxidation showed that the migration induced a distinct promotional effect on the activities of catalysts, supposedly closely related to the increased surface active Cu species and improved redox properties generated by the Cu migration. The present study offers renewed understanding of the dynamic behavior of ceria-based solid solution catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...